
Summer Research in Mathematics 2023 Summer Research in Mathematics
MSRI/SLMath's Summer Research in Mathematics program provides space, funding, and the opportunity for inperson collaboration to small groups of mathematicians, especially women and genderexpansive individuals, whose ongoing research may have been disproportionately affected by various obstacles including family obligations, professional isolation, or access to funding. Through this effort, MSRI/SLMath aims to mitigate the obstacles faced by these groups, improve the odds of research project completion, and deepen their research experience. The ultimate goal of this program is to enhance the mathematical sciences as a whole by positively affecting the research and careers of all of its participants and assisting their efforts to maintain involvement in the research community.
The ultimate goal of this program is to enhance the mathematical sciences as a whole by positively affecting the research and careers of all of its participants and assisting their efforts to maintain involvement in the research community.
Updated on May 18, 2023 12:03 PM PDT 
Summer Graduate School Formalization of Mathematics (SLMath)
Organizers: Jeremy Avigad (Carnegie Mellon University), Heather Macbeth (Fordham University at Lincoln Center), Patrick Massot (Université ParisSaclay)Computational proof assistants now make it possible to develop global, digital mathematical libraries with theorems that are fully checked by computer. This summer school will introduce students to the new technology and the ideas behind it, and will encourage them to think about the goals and benefits of formalized mathematics. Students will learn to use the Lean interactive proof assistant, and by the end of the session they will be in a position to formalize mathematics on their own, join the Lean community, and contribute to its mathematical library.
Updated on May 11, 2023 02:03 PM PDT 
MSRIUP MSRIUP 2023: Topological Data Analysis
Organizers: Federico Ardila (San Francisco State University), LEAD Maria Mercedes Franco (Queensborough Community College (CUNY)), Rebecca Garcia (Sam Houston State University), Jose Perea (Northeastern University), Candice Price (Smith College), Robin Wilson (Loyola Marymount University)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2023, MSRIUP will focus on Topological Data Analysis. The research program will be led by Dr. Jose Perea, Associate Professor in the Department of Mathematics and the Khoury College of Computer Sciences at Northeastern University.
Updated on Mar 20, 2023 08:50 AM PDT 
Summer Graduate School Algebraic Methods for Biochemical Reaction Networks (Leipzig, Germany)
Organizers: Timo de Wolff (TU Braunschweig), LEAD Alicia Dickenstein (University of Buenos Aires), Elisenda Feliu (University of Copenhagen)The aim of the course is to learn how tools from algebraic geometry (in particular, from computational and real algebraic geometry) can be used to analyze standard models in molecular biology. Particularly, these models are key ingredients in the development of Systems and Synthetic biology, two active research areas focusing on understanding, modifying, and implementing the design principles of living systems.
We will focus on the mathematical aspects of the methods, and exemplify and apply the theory to real networks, thereby introducing the participants to relevant problems and mechanisms in molecular biology. As a counterpart, however, the participants will also see how this field has in the past challenged current methods, mainly in the realm of real algebraic geometry, and has given rise to new general and purely theoretical results on polynomial equations. We will end our lectures with an overview of open questions in both fields.
Updated on Apr 24, 2023 03:46 PM PDT 
African Diaspora Joint Mathematics 2023 African Diaspora Joint Mathematics Workshop
The African Diaspora Joint Mathematics Workshop (ADJOINT) will take place at the Mathematical Sciences Research Institute in Berkeley, CA from June 19 to June 30, 2023.
ADJOINT is a twoweek summer activity designed for researchers with a Ph.D. degree in the mathematical sciences who are interested in conducting research in a collegial environment.
The main objective of ADJOINT is to provide opportunities for inperson research collaboration to U.S. mathematicians, especially those from the African Diaspora, who will work in small groups with research leaders on various research projects.
Through this effort, MSRI aims to establish and promote research communities that will foster and strengthen research productivity and career development among its participants. The ADJOINT workshops are designed to catalyze research collaborations, provide support for conferences to increase the visibility of the researchers, and to develop a sense of community among the mathematicians who attend.
The end goal of this program is to enhance the mathematical sciences and its community by positively affecting the research and careers of AfricanAmerican mathematicians and supporting their efforts to achieve full access and engagement in the broader research community.
Each summer, three to five research leaders will each propose a research topic to be studied during a twoweek workshop.
During the workshop, each participant will:
 conduct research at MSRI within a group of four to five mathematicians under the direction of one of the research leaders
 participate in professional enhancement activities provided by the onsite ADJOINT Director
 receive funding for two weeks of lodging, meals and incidentals, and one roundtrip travel to Berkeley, CA
After the twoweek workshop, each participant will:
 have the opportunity to further their research project with the team members including the research leader
 have access to funding to attend conference(s) or to meet with other team members to pursue the research project, or to present results
 become part of a network of research and career mentors
Updated on Sep 19, 2022 11:48 AM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2023: Periodic and Ergodic Spectral Problems (Montréal, Canada)
Organizers: Alexander Elgart (Virginia Polytechnic Institute and State University), Vojkan Jaksic (McGill University), Svetlana Jitomirskaya (University of California, Irvine), Ilya Kachkovskiy (Michigan State University), Jean Lagacé (King's College London), Leonid Parnovski (University College London)This two week school will focus on spectral theory of periodic, almostperiodic, and random operators. The main aim of this school is to teach the students who work in one of these areas, methods used in parallel problems, explain the similarities between all these areas and show them the `big picture'.
Updated on Apr 06, 2023 06:24 PM PDT 
Summer Graduate School Mathematics and Computer Science of Market and Mechanism Design (SLMath)
Organizers: Yannai Gonczarowski (Harvard University), Irene Lo (Stanford University), Ran Shorrer (Pennsylvania State University), LEAD Inbal TalgamCohen (TechnionIsrael Institute of Technology)This school is associated with an upcoming research program at MSRI under the same title. The goal of the school is to equip students unfamiliar with these topics with the mathematical and theoretical computer science toolbox that forms the foundation of market and mechanism design.
Updated on May 11, 2023 12:37 PM PDT 
Summer Graduate School Topics in Geometric Flows and Minimal Surfaces (St. Mary's College)
Organizers: Ailana Fraser (University of British Columbia), LanHsuan Huang (University of Connecticut), Catherine Searle (Wichita State University), Lu Wang (Yale University)This graduate summer school will introduce students to two important and interrelated fields of differential geometry: geometric flows and minimal surfaces.
Geometric flows have had far reaching influences on numerous branches of mathematics and other scientific disciplines. An outstanding example is the completion of Hamilton’s Ricci flow program by Perelman, leading to the resolution of the Poincare conjecture and Thurston’s geometrization conjecture for 3manifolds. In this part of the summer school, students will be guided through basic topics and ideas in the study of geometric flows.
Since Penrose used variations of volume to formulate and study black holes in general relativity (in his Nobel prizewinning work), the intriguing connections between minimal surfaces and general relativity have been a strong driving force for the modern developments of both research areas. This part of the summer school will introduce students to the basic theory of minimal submanifolds and its applications in Riemannian geometry and general relativity.
The curriculum of this program will be accessible and will have a broad appeal to graduate students from a variety of mathematical areas, introducing some of the latest developments in each area and the remaining open problems therein, while simultaneously emphasizing their synergy.
Updated on Apr 27, 2023 12:13 PM PDT 
Summer Graduate School Machine Learning (UC San Diego)
Organizers: Ery AriasCastro (University of California, San Diego), Mikhail Belkin (University of California, San Diego), Yusu Wang (Univ. California, San Diego), Lily Weng (University of California, San Diego)The overarching goal of this summer school is to expose the students both to modern forms of unsupervised learning — in the form of geometrical and topological data analysis — and to supervised learning — in the form of (deep) neural networks applied to regression/classification problems. The organizers have opted for a lighter exposure to a broader range of topics. Using the metaphor of a meal, we are offering 2 + 2 samplers — geometry and topology for data analysis + theoretical and practical deep learning — rather than 1 + 1 main dishes. The main goal, thus, is to inspire the students to learn more about one or several of the topics covered in the school.
The expected learning outcomes for students attending the school are the following:
1. An introduction to how concepts and tools from geometry and topology can be leveraged to perform data analysis in situations where the data are not labeled.
2. An introduction to recent and ongoing theoretical and methodological/practical developments in the use of neural networks for data analysis (deep learning).
Updated on Mar 19, 2023 06:44 PM PDT 
Summer Graduate School Introduction to Derived Algebraic Geometry (UC Berkeley)
Organizers: Benjamin Antieau (Northwestern University), Dmytro Arinkin (University of WisconsinMadison)Derived algebraic geometry is an ‘update’ of algebraic geometry using ‘derived’ (roughly speaking, homological) techniques. This requires recasting the very foundations of the field: rings have to be replaced by differential graded algebras (or other forms of derived rings), categories by higher categories, and so on. The result is a powerful set of new tools, useful both within algebraic geometry and in related areas. The school serves as an introduction to these techniques, focusing on their applications.
The school is built around two related courses on geometric (‘derived spaces’) and categorical (‘derived categories’) aspects of the theory. Our goal is to explain the key ideas and concepts, while trying to keep technicalities to a minimum.
Updated on May 17, 2023 04:21 PM PDT 
Summer Graduate School Concentration Inequalities and Localization Techniques in High Dimensional Probability and Geometry (SLMath)
Organizers: Max Fathi (Université Paris Cité), Dan Mikulincer (Massachusetts Institute of Technology)The goal of the summer school is for the students to first become familiar with the concept of concentration of measure in different settings (Euclidean, Riemannian and discrete), and the main open problems surrounding it. The students will later become familiar with the proof techniques that involve the different types of localization and obtain expertise on the ways to apply the localization techniques. After attending the graduate school, the students are expected to have the necessary background that would give them a chance to both conduct research around open problems in concentration of measure, find new applications to existing localization techniques and perhaps also develop new localization techniques.
Updated on Mar 13, 2023 11:34 AM PDT 
Summer Graduate School Mathematics of Big Data: Sketching and (Multi) Linear Algebra (IBM Almaden)
Organizers: Kenneth Clarkson (IBM Research Division), Lior Horesh (IBM Thomas J. Watson Research Center), Misha Kilmer (Tufts University), Tamara Kolda (MathSci.ai), Shashanka Ubaru (IBM Thomas J. Watson Research Center)This summer school will introduce graduate students to sketchingbased approaches to computational linear and multilinear algebra. Sketching here refers to a set of techniques for compressing a matrix, to one with fewer rows, or columns, or entries, usually via various kinds of random linear maps. We will discuss matrix computations, tensor algebras, and such sketching techniques, together with their applications and analysis.
Updated on Nov 03, 2022 11:59 AM PDT 
Program Mathematical Problems in Fluid Dynamics, part 2
Organizers: Thomas Alazard (Ecole Normale Supérieure ParisSaclay; Centre National de la Recherche Scientifique (CNRS)), Hajer Bahouri (Laboratoire JacquesLouis Lions; Centre National de la Recherche Scientifique (CNRS)), Mihaela Ifrim (University of WisconsinMadison), Igor Kukavica (University of Southern California), David Lannes (Institut de Mathématiques de Bordeaux; Centre National de la Recherche Scientifique (CNRS)), Daniel Tataru (University of California, Berkeley)PROGRAM DESCRIPTION
Fluid dynamics is one of the classical areas of partial differential equations, and has been the subject of extensive research over hundreds of years. It is perhaps one of the most challenging and exciting fields of scientific pursuit simply because of the complexity of the subject and the endless breadth of applications.
The focus of the program is on incompressible fluids, where water is a primary example. The fundamental equations in this area are the wellknown Euler equations for inviscid fluids, and the NavierStokes equations for the viscous fluids. Relating the two is the problem of the zero viscosity limit, and its connection to the phenomena of turbulence. Water waves, or more generally interface problems in fluids, represent another target area for the program. Both theoretical and numerical aspects will be considered.
Updated on Mar 18, 2023 04:16 PM PDT 
Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Zürich, Switzerland)
Organizers: Alessandro Chiesa (École Polytechnique Fédérale de Lausanne (EPFL))Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamental computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.
The complexitytheoretic study of proof verification has led to exciting reenvisionings of mathematical proofs. For example, probabilistically checkable proofs (PCPs) admit localtoglobal structure that allows verifying a proof by reading only a minuscule portion of it. As another example, interactive proofs allow for verification via a conversation between a prover and a verifier, instead of the traditional static sequence of logical statements. The study of such proof systems has drawn upon deep mathematical tools to derive numerous applications to the theory of computation and beyond.
In recent years, such probabilistic proofs received much attention due to a new motivation, delegation of computation, which is the emphasis of this summer school. This paradigm admits ultrafast protocols that allow one party to check the correctness of the computation performed by another, untrusted, party. These protocols have even been realized within recentlydeployed technology, for example, as part of cryptographic constructions known as succinct noninteractive arguments of knowledge (SNARKs).
This summer school will provide an introduction to the field of probabilistic proofs and the beautiful mathematics behind it, as well as prepare students for conducting cuttingedge research in this area.
Updated on Apr 18, 2023 02:28 PM PDT 
Program Mathematics and Computer Science of Market and Mechanism Design
Organizers: Martin Bichler (Technical University of Munich), Péter Biró (KRTK, Eotvos Lorand Research Network), Michal Feldman (TelAviv University), Nicole Immorlica (Microsoft Research), LEAD Scott Kominers (Harvard Business School), Shengwu Li (Harvard University), Paul Milgrom (Stanford University), Alvin Roth (Stanford University), Eva Tardos (Cornell University)In recent years, economists and computer scientists have collaborated with mathematicians, operations research experts, and practitioners to improve the design and operations of realworld marketplaces. Such work relies on robust feedback between theory and practice, inspiring new mathematics closely linked – and directly applicable – to market and mechanism design questions. This crossdisciplinary program seeks to expand the domains in which existing market design solutions can be applied; address foundational questions regarding our ways of developing and evaluating mechanisms; and build useful analytic frameworks for applying theory to practical marketplace design.
Updated on Nov 11, 2022 01:37 PM PST 
Program Algorithms, Fairness, and Equity
Organizers: Vincent Conitzer (Carnegie Mellon University), Moon Duchin (Tufts University), Bettina Klaus (University of Lausanne), Jonathan Mattingly (Duke University), LEAD Wesley Pegden (Carnegie Mellon University)This program aims to bring together researchers working at the interface of fairness and computation. This interface has been the site of intensive research effort in mechanism design, in research on partitioning problems related to political districting problems, and in research on ways to address issues of fairness and equity in the context of machine learning algorithms.
These areas each approach the relationship between mathematics and fairness from a distinct perspective. In mechanism design, algorithms are a tool to achieve outcomes with mathematical guarantees of various notions of fairness. In machine learning, we perceive failures of fairness as an undesirable side effect of learning approaches, and seek mathematical approaches to understand and mitigate these failures. And in partitioning problems like political districting, we often seek mathematical tools to evaluate the fairness of human decisions.
This program will explore progress in these areas while also providing a venue for overlapping perspectives. The topics workshop “Randomization, neutrality, and fairness” will explore the common role randomness and probability has played in these lines of work.
Updated on Nov 11, 2022 01:41 PM PST 
Program Complementary Program 202324
The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.
Updated on Dec 07, 2022 03:59 PM PST 
Workshop Connections Workshop: Algorithms, Fairness, and Equity
Organizers: Vincent Conitzer (Carnegie Mellon University), LEAD Rachel Cummings (Columbia University), AnaAndreea Stoica (University of California, Berkeley)The Connections Workshop will welcome participants of all genders and identities, with the scope of fostering a sense of community, amplifying voices of those who identify as women, and providing avenues to allies to be helpful. The workshop particularly aims to increase visibility among junior women in fields adjacent to the topics of the general program, including but not limited to gametheoretic fairness, mechanism design, partition, networks, redistricting, and fairness in machine learning. This twoday workshop will include keynote speakers, lightning talks from participants, panel discussions on career advancement, breakout sessions by research areas, opportunities for networking, and other mentoring activities.
Updated on Jan 03, 2023 03:41 PM PST 
Workshop Introductory Workshop: Algorithms, Fairness, and Equity
Organizers: Vincent Conitzer (Carnegie Mellon University), LEAD Moon Duchin (Tufts University), Wesley Pegden (Carnegie Mellon University), Dana Randall (Georgia Institute of Technology), LEAD Soledad Villar (Johns Hopkins University)In this workshop, we will bring together speakers who are engaged in the active areas of scholarship around algorithmic fairness, the disparate impacts of facially impartial systems, and the ways that algorithms can be enmeshed in governance and decisionmaking—for better and worse. The speakers will introduce themes that will be picked up throughout the semester program on "Algorithms, Fairness, and Equity."
Updated on Mar 10, 2023 02:56 PM PST 
Workshop Connections Workshop: Mathematics and Computer Science of Market and Mechanism Design
Organizers: Martin Bichler (Technical University of Munich), Péter Biró (KRTK, Eotvos Lorand Research Network), Michal Feldman (TelAviv University), LEAD Nicole Immorlica (Microsoft Research)The Connections Workshop will consist of invited talks from leading researchers at all career stages in the field of market design. Particular attention will be paid to realworld applications. There will also be an AMA focused on career paths with highly visible individuals in the field, and a social event intended to help workshop attendees network with each other.
Updated on May 25, 2023 02:25 PM PDT 
Workshop Introductory Workshop: Mathematics and Computer Science of Market and Mechanism Design
Organizers: Martin Bichler (Technical University of Munich), Péter Biró (KRTK, Eotvos Lorand Research Network), Scott Kominers (Harvard Business School), Paul Milgrom (Stanford University), Alvin Roth (Stanford University), Eva Tardos (Cornell University)This workshop is multifaceted. In addition to familiarizing graduate students and other junior participants to the topics of the program, the workshop will also reinforce common ground and language among computer scientists and economists and provide an onramp introduction for interested mathematicians.
Updated on May 25, 2023 02:25 PM PDT 
Workshop Hot Topics: MIP* = RE and the Connes’ Embedding Problem
Organizers: Michael Chapman (New York University, Courant Institute), Anand Natarajan (Massachusetts Institute of Technology), William Slofstra (University of Waterloo), John Wright (University of Texas, Austin), Henry Yuen (Columbia University)This workshop is about the recent MIP*=RE result from quantum computational complexity, and the resulting resolution of the Connes embedding problem from the theory of von Neumann algebras. MIP*=RE connects the disparate areas of computational complexity theory, quantum information, operator algebras, and approximate representation theory. The aim of this workshop is to bridge this divide, by giving an indepth exposition of the techniques used in the proof of MIP*=RE, and highlighting perspectives on the MIP*=RE result from operator algebras and approximate representation theory. In particular, this workshop will highlight connections with group stability, something that has not been covered in previous workshops. In addition to increasing understanding of the MIP*=RE proof, we hope that this will open up further applications of the ideas behind MIP*=RE in operator algebras.
Updated on Mar 30, 2023 04:00 PM PDT 
Workshop Randomization, Neutrality, and Fairness
Organizers: LEAD Jonathan Mattingly (Duke University), Berk Ustun (UC San Diego), Rachel WardThis workshop will look at the idea of fairness and neutrality in algorithms and decisionmaking. How it relates to the idea of randomization and how randomization can be employed in the pursuit of neutrality and fairness. The goal is both to bring together stateoftheart research and explore the implications and limitations of the deployment in the real world.
Updated on Mar 27, 2023 09:29 AM PDT 
Workshop Modern Math 2023
Updated on May 26, 2023 09:14 AM PDT 
Workshop Practical Approximation for Market Design
Organizers: Martin Bichler (Technical University of Munich), Péter Biró (KRTK, Eotvos Lorand Research Network), Michal Feldman (TelAviv University), Scott Kominers (Harvard Business School), Ellen Muir (Harvard University), Ilya Segal (Stanford University), Inbal TalgamCohen (TechnionIsrael Institute of Technology)Updated on Mar 30, 2023 02:15 PM PDT 
Workshop Hot Topics: Recent Progress in Deterministic and Stochastic FluidStructure Interaction
Organizers: Suncica Canic (University of California, Berkeley), LEAD Jeffrey Kuan (University of California, Berkeley)This workshop will focus on the coupled dynamical interaction between fluids and elastic/poroelastic structures, with an emphasis on the most recent and cuttingedge mathematical advances in deterministic and stochastic fluidstructure interaction. The goal of this workshop is to bring together a diverse group of mathematicians in the fields of analysis, modeling, numerics, stochastics, and realworld applications in order to showcase an interdisciplinary approach to the study of coupled fluidstructure systems. A major component of this workshop will be to encourage active participation of early career researchers, such as graduate students and postdocs, and foster synergistic collaboration with established leaders in the field.
Updated on Apr 03, 2023 02:57 PM PDT 
Program Commutative Algebra
Organizers: Aldo Conca (Università di Genova), Steven Cutkosky (University of Missouri), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame), Steven Sam (University of California, San Diego), Kevin Tucker (University of Illinois at Chicago), Claire Voisin (Collège de France; Institut de Mathématiques de Jussieu)Commutative algebra is, in its essence, the study of algebraic objects, such as rings and modules over them, arising from polynomials and integral numbers. It has numerous connections to other fields of mathematics including algebraic geometry, algebraic number theory, algebraic topology and algebraic combinatorics. Commutative Algebra has witnessed a number of spectacular developments in recent years, including the resolution of longstanding problems, with new techniques and perspectives leading to an extraordinary transformation in the field. The main focus of the program will be on these developments. These include the recent solution of Hochster's direct summand conjecture in mixed characteristic that employs the theory of perfectoid spaces, a new approach to the BuchsbaumEisenbudHorrocks conjecture on the Betti numbers of modules of finite length, recent progress on the study of CastelnuovoMumford regularity, the proof of Stillman's conjecture and ongoing work on its effectiveness, a novel strategy to Green's conjecture on the syzygies of canonical curves based on the study of Koszul modules and their generalizations, new developments in the study of various types of multiplicities, theoretical and computational aspects of Gröbner bases, and the implicitization problem for Rees algebras and its applications.
Updated on May 24, 2022 10:29 AM PDT 
Program Noncommutative Algebraic Geometry
Organizers: Wendy Lowen (Universiteit Antwerp), Alexander Perry (University of Michigan), LEAD Alexander Polishchuk (University of Oregon), Susan Sierra (University of Edinburgh), Spela Spenko (Université Libre de Bruxelles), Michel Van den Bergh (Hasselt University)Derived categories of coherent sheaves on algebraic varieties were originally conceived as technical tools for studying cohomology, but have since become central objects in fields ranging from algebraic geometry to mathematical physics, symplectic geometry, and representation theory. Noncommutative algebraic geometry is based on the idea that any category sufficiently similar to the derived category of a variety should be regarded as (the derived category of) a “noncommutative algebraic variety”; examples include semiorthogonal components of derived categories, categories of matrix factorizations, and derived categories of noncommutative dgalgebras. This perspective has led to progress on old problems, as well as surprising connections between seemingly unrelated areas. In recent years there have been great advances in this domain, including new tools for constructing semiorthogonal decompositions and derived equivalences, progress on conjectures relating birational geometry and singularities to derived categories, constructions of moduli spaces from noncommutative varieties, and instances of homological mirror symmetry for noncommutative varieties. The goal of this program is to explore and expand upon these developments.
Updated on May 19, 2022 01:51 PM PDT 
Workshop Connections Workshop: Commutative Algebra
Organizers: Christine Berkesch (University of Minnesota, Twin Cities), Louiza Fouli (New Mexico State University), Maria Evelina Rossi (Università di Genova), LEAD Alexandra Seceleanu (University of Nebraska)This twoday workshop will feature the work of mathematicians in commutative algebra who identify as women or another marginalized gender. The talks will be appropriate for graduate students, postdocs, and researchers in areas related to the program. This meeting aims to support young researchers. The format will include plenary talks, poster sessions, panel discussions, as well as the opportunity for informal discussions and connections. The workshop is open to all mathematicians, and members of historically excluded groups and identities are especially encouraged to attend.
Updated on Nov 04, 2022 04:05 PM PDT 
Workshop Introductory Workshop: Commutative Algebra
Organizers: Srikanth Iyengar (University of Utah), Claudia Miller (Syracuse University), Claudia Polini (University of Notre Dame), LEAD Anurag Singh (University of Utah)The Introductory Workshop will feature lecture series devoted to some recent breakthrough results in commutative algebra, and to new developments in core areas of the field. It will also highlight links to other areas such as arithmetic geometry, representation theory, noncommutative geometry, and singularity theory.
Updated on Oct 31, 2022 04:02 PM PDT 
Workshop Connections Workshop: Noncommutative Algebraic Geometry
Organizers: Rina Anno (Kansas State University), Elizabeth Gasparim (Universidad Católica del Norte), LEAD Alice Rizzardo (University of Liverpool)This twoday workshop will feature the work of mathematicians in noncommutative geometry who identify as women or another marginalized gender. The talks will be appropriate for graduate students, postdocs, and researchers in areas related to the program. This meeting aims to support young researchers.
The workshop will focus on recent developments in noncommutative algebraic geometry including Derived Algebraic Geometry, Categorical and Noncommutative Resolutions, Deformation Theory, and Enumerative Geometry.
The format will include plenary talks, a poster session, panel discussions, as well as the opportunity for informal discussions and connections in noncommutative geometry. The workshop is open to all mathematicians, and members of historically excluded groups and identities are especially encouraged to attend.
Updated on Feb 06, 2023 11:36 AM PST 
Workshop Introductory Workshop: Noncommutative Algebraic Geometry
Organizers: LEAD Nicolas Addington (University of Oregon), David Favero, Wendy Lowen (Universiteit Antwerp), Alice Rizzardo (University of Liverpool)This introductory workshop will consist of a combination of minicourses addressing core topics in noncommutative algebraic geometry and research lectures describing recent developments in the field. The workshop will focus on subjects connected to algebraic geometry, category theory, and mirror symmetry such as categorical and noncommutative resolutions, deformation theory, derived categories in algebraic geometry, derived algebraic geometry, infinity categories, and enumerative geometry.
Updated on Feb 22, 2023 03:13 PM PST 
Workshop Hot Topics: Artin Groups and Arrangements  Topology, Geometry, and Combinatorics
Organizers: Christin Bibby (Louisiana State University), Ruth Charney (Brandeis University), Giovanni Paolini (California Institute of Technology), Mario Salvetti (Università di Pisa)This workshop brings together experts from different areas to discuss and foster collaboration on several topics of current interest related to Artin groups such as the K(π, 1) conjecture, hyperplane arrangements and abelian arrangements, combinatorial structures associated with dual Coxeter systems, and complexes of nonpositive curvature.
Updated on Mar 30, 2023 04:00 PM PDT 
Workshop Recent Developments in Noncommutative Algebraic Geometry
Organizers: Arend Bayer (University of Edinburgh), Graham Leuschke (Syracuse University), Alexander Polishchuk (University of Oregon), Susan Sierra (University of Edinburgh), Spela Spenko (Université Libre de Bruxelles), Gregory Stevenson (Aarhus University)This workshop will give an overview of recent developments in noncommutative algebraic geometry, including NC projective AG, NC resolutions, semiorthogonal decompositions, enhancements of derived categories, and connections to homological mirror symmetry, to enumerative AG, to moduli spaces and to birational geometry. It will in particular focus on speakers who have built new bridges between these topics.
Updated on Nov 30, 2022 09:03 AM PST 
Workshop Recent Developments in Commutative Algebra
Organizers: Daniel Erman (University of WisconsinMadison), Linquan Ma (Purdue University), LEAD Karl Schwede (University of Utah), Karen Smith (University of Michigan), Andrew Snowden (University of Michigan), Irena Swanson (Purdue University)Many longstanding conjectures in commutative algebra have been solved in recent years, often through the introduction of new methods that are quickly becoming central to the field. This workshop will bring together a wide array of researchers in commutative algebra and related fields, with the goal of forging new connections among topics, and with a particular emphasis on transformative new methods.
Created on Jul 27, 2022 02:01 PM PDT 
Workshop Advances in Lie Theory, Representation Theory and Combinatorics: Inspired by the work of Georgia M. Benkart
Organizers: Hélène Barcelo (MSRI / Simons Laufer Mathematical Sciences Institute (SLMath)), Ellen Kirkman (Wake Forest University), Gail Letzter, Daniel Nakano (University of Georgia), Arun Ram (University of Melbourne)This workshop will have a view to the future of a broad spectrum of topics including
 structure and classification of finite dimensional Lie algebras and superalgebras in characteristic p
 structure of infinite dimensional Lie algebras and their representations
 deformation theory of algebras, double constructions and elemental Lie algebras
 diagram algebras and combinatorial representation theory
 algebraic combinatorics of groups of Lie type:characters, SchurWeyl duality, Bratteli diagrams, and McKay correspondences
 quantum groups and crystal bases, particularly for superalgebras and affine algebras
 examples of fusion categories arising from representations of Drinfeld doubles and other algebras
 cohomology for finite tensor categories with applications to its underlying geometry
This meeting will feature principal contributors in these areas in a celebration of the work of Georgia Benkart. With the same focus and tenacity that Georgia always had, we will strive to provide a conference full of beautiful mathematics, incredible inspiration, and the warmth of Georgia’s welcoming personality to our field and our community.
Updated on Apr 24, 2023 08:41 AM PDT 
African Diaspora Joint Mathematics 2024 African Diaspora Joint Mathematics Workshop (ADJOINT2024)
The African Diaspora Joint Mathematics Workshop (ADJOINT) will take place at the Simons Laufer Mathematical Sciences Institute in Berkeley, CA from June 24 to July 5, 2024.
ADJOINT is a twoweek summer activity designed for researchers with a Ph.D. degree in the mathematical sciences who are interested in conducting research in a collegial environment.
The main objective of ADJOINT is to provide opportunities for inperson research collaboration to U.S. mathematicians, especially those from the African Diaspora, who will work in small groups with research leaders on various research projects.
Through this effort, SLMath aims to establish and promote research communities that will foster and strengthen research productivity and career development among its participants. The ADJOINT workshops are designed to catalyze research collaborations, provide support for conferences to increase the visibility of the researchers, and to develop a sense of community among the mathematicians who attend.
The end goal of this program is to enhance the mathematical sciences and its community by positively affecting the research and careers of AfricanAmerican mathematicians and supporting their efforts to achieve full access and engagement in the broader research community.
Each summer, three to five research leaders will each propose a research topic to be studied during a twoweek workshop.
During the workshop, each participant will:
 conduct research at SLMath within a group of four to five mathematicians under the direction of one of the research leaders
 participate in professional enhancement activities provided by the onsite ADJOINT Director
 receive funding for two weeks of lodging, meals and incidentals, and one roundtrip travel to Berkeley, CA
After the twoweek workshop, each participant will:
 have the opportunity to further their research project with the team members including the research leader
 have access to funding to attend conference(s) or to meet with other team members to pursue the research project, or to present results
 become part of a network of research and career mentors
Updated on May 05, 2023 02:37 PM PDT 
Summer Graduate School Stochastic Quantization
Organizers: Massimiliano Gubinelli (Rheinische FriedrichWilhelmsUniversität Bonn), Martina Hofmanova (Universität Bielefeld), LEAD Hao Shen (University of WisconsinMadison), Lorenzo Zambotti (Université de Paris VI (Pierre et Marie Curie))This summer school will familiarize students with the basic problems of the mathematical theory of Euclidean quantum fields. The lectures will introduce some of its prominent models and analyze them via the so called “stochastic quantization” methods, involving recently developed stochastic and PDE techniques. This is an area which is highly interdisciplinary combining ideas ranging from the theory of partial differential equations, to stochastic analysis, to mathematical physics. Our goal is to bring together students which are maybe familiar with some but not all of these subjects and teach them how to integrate these different tools to solve cuttingedge problems of Euclidean quantum field theory.
Updated on May 24, 2023 11:54 AM PDT 
Program New Frontiers in Curvature: Flows, General Relativity, Minimal Submanifolds, and Symmetry
Organizers: LEAD Ailana Fraser (University of British Columbia), LanHsuan Huang (University of Connecticut), Richard Schoen (University of California, Irvine), LEAD Catherine Searle (Wichita State University), Lu Wang (Yale University), Guofang Wei (University of California, Santa Barbara)Geometry, PDE, and Relativity are subjects that have shown intriguing interactions in the past several decades, while simultaneously diverging, each with an ever growing number of branches. Recently, several major breakthroughs have been made in each of these fields using techniques and ideas from the others.
This program is aimed at connecting various branches of Geometry, PDE, and Relativity and at enhancing collaborations across these disciplines and will include four main topics: Geometric Flows, Geometric problems in Mathematical Relativity, Global Riemannian Geometry, and Minimal Submanifolds. Specifically the program focuses on a central goal, which is to advance our knowledge toward Riemannian (sub)manifolds under geometric conditions, such as curvature lower bounds, by developing techniques in, for example, geometric flows and minimal submanifolds and further fostering new connections.
Updated on Nov 17, 2022 10:10 AM PST 
Program Special Geometric Structures and Analysis
Organizers: Eleonora Di Nezza (Institut de Mathématiques de Jussieu), LEAD Mark Haskins (Duke University), Tristan Riviere (ETH Zurich), Song Sun (University of California, Berkeley), Xuwen Zhu (Northeastern University)This program sits at the intersection between differential geometry and analysis but also connects to several other adjacent mathematical fields and to theoretical physics. Differential geometry aims to answer questions about very regular geometric objects (smooth Riemannian manifolds) using the tools of differential calculus. A fundamental object is the curvature tensor of a Riemannian metric: an algebraically complicated object that involves 2nd partial derivatives of the metric. Many questions in differential geometry can therefore be translated into questions about the existence or properties of the solutions of systems of (often) nonlinear partial differential equations (PDEs). The PDE systems that arise in geometry have historically stimulated the development of powerful new analytic methods. In most cases the nonlinearity of these systems makes ‘closed form’ expressions for a solution impossible: instead more abstract methods must be employed.
Updated on Nov 10, 2022 04:20 PM PST 
Program Probability and Statistics of Discrete Structures
Organizers: Louigi AddarioBerry (McGill University), Christina Goldschmidt (University of Oxford), PoLing Loh (University of Cambridge), Gabor Lugosi (Universitat Pompeu Fabra), Dana Randall (Georgia Institute of Technology), LEAD Remco van der Hofstad (Technische Universiteit Eindhoven)Random graphs and related random discrete structures lie at the forefront of applied probability and statistics, and are core topics across a wide range of scientific disciplines where mathematical ideas are used to model and understand realworld networks. At the same time, random graphs pose challenging mathematical and algorithmic problems that have attracted attention from probabilists and combinatorialists since at least 1960, following the pioneering work of Erdos and Renyi.
Around the turn of the millennium, as very large data sets became available, several applied disciplines started to realize that many realworld networks, even though they are from various origins, share fascinating features. In particular, many such networks are small worlds, meaning that graph distances in them are typically quite small, and they are scalefree, in the sense that the number of connections made by their elements is extremely heterogeneous. This program is devoted to the study of the probabilistic and statistical properties of such networks. Central tools include graphon theory for dense graphs, local weak convergence for sparse graphs, and scaling limits for the critical behavior of graphs or stochastic processes on them. The program is aimed at pure and applied mathematicians interested in network problems.Updated on Feb 23, 2023 02:26 PM PST 
Program Extremal Combinatorics
Organizers: LEAD David Conlon (California Institute of Technology), LEAD Jacob Fox (Stanford University), Penny Haxell (University of Waterloo), Janos Pach (Alfréd Rényi Institute of Mathematics), Maya Stein (Universidad de Chile), Andrew Suk (University of California, San Diego)Extremal combinatorics concerns itself with problems about how large or small a finite collection of objects can be while satisfying certain conditions. Questions of this type arise naturally across mathematics, so this area has close connections and interactions with a broad array of other fields, including number theory, group theory, model theory, probability, statistical physics, optimization, and theoretical computer science.
The area has seen huge growth in the twentyfirst century and, particularly in recent years, there has been a steady stream of solutions to important longstanding problems and many powerful new methods have been introduced. These advances include improvements in absorption techniques which have facilitated the proof of the existence of designs and related objects, the breakthrough on the sunflower conjecture whose further development eventually led to the proof of the Kahn–Kalai conjecture in discrete probability and the discovery of interactions between spectral graph theory and the study of equiangular lines in discrete geometry. These and other groundbreaking advances will be the central theme of the semester program on “Extremal Combinatorics” at SLMath.
In this program, we will bring together experts as well as enthusiastic young researchers to learn from each other, to initiate and continue collaborations, to communicate recent work, and to further advance the field by making progress on fundamental open problems and developing further connections with other branches of mathematics. We trust that younger mathematicians will greatly contribute to the success of the program with their new ideas. It is our hope that this program will provide a unique opportunity for women and underrepresented groups to make outstanding contributions to the field and we strongly encourage their participation.
Updated on Feb 27, 2023 03:02 PM PST 
Workshop Connections Workshop: Extremal Combinatorics
Organizers: Julia Boettcher (London School of Economics and Political Science), Anita Liebenau (University of New South Wales), LEAD Maya Stein (Universidad de Chile)The purpose of this workshop is to bring together promising earlycareer researchers in extremal combinatorics who are women or from underrepresented minorities so that they can meet with, forge connections with, and be inspired by the leading figures in the area. The workshop will include lectures, time for collaborative research, and an informal panel discussion session among female and minority researchers on career issues.
Updated on Apr 04, 2023 08:43 AM PDT 
Workshop Introductory Workshop  Graph Theory: Extremal, Probabilistic and Structural
Organizers: LEAD Penny Haxell (University of Waterloo), Michael Krivelevich (Tel Aviv University), Alex Scott (University of Oxford)This workshop will feature leading experts in several major areas of graph theory, including extremal, probabilistic and structural aspects of the field. Introductory lectures will form an important part of the program, providing background and motivation, and aimed at a general mathematical audience. Complementing these, research talks will share exciting recent developments in graph theory.
Updated on Mar 31, 2023 03:48 PM PDT

Upcoming Scientific Events 