Logo

Mathematical Sciences Research Institute

Home » MLA - Weekly Seminar (Part 1): X-ray transforms on simple Riemannian manifolds with boundary: mapping properties and consequences

Seminar

MLA - Weekly Seminar (Part 1): X-ray transforms on simple Riemannian manifolds with boundary: mapping properties and consequences December 04, 2019 (02:00 PM PST - 03:00 PM PST)
Parent Program:
Location: MSRI: Simons Auditorium
Speaker(s) Francois Monard (University of California, Santa Cruz)
Description No Description
Video
No Video Uploaded
Abstract/Media

We will discuss a collection of results centered around the mapping properties of the X-ray transform $I_0$ and its normal operator on simple Riemannian manifolds with boundary. Such results depend on choices of weighted $L^2$ topologies, to be chosen on the manifold of interest and its space of geodesics. In the cases presented, appropriate scales of Sobolev spaces can be derived, where to formulate accurate mapping properties for $I_0$ and $I_0^* I_0$, in particular allowing for sharp stability estimates. Some more new interesting facts will be discussed along the way in certain geometries: new connections between $I_0^* I_0$ and degenerate elliptic differential operators; anisotropic Sobolev scales on the space of geodesics which capture the smoothing properties of the X-ray transform, and applications to exact filtered-backprojection formulas. 

No Notes/Supplements Uploaded No Video Files Uploaded