Logo

Mathematical Sciences Research Institute

Home » Postdoc Lunch Seminar II: Riemannian manifolds with positive Yamabe invariant and Paneitz operator

Seminar

Postdoc Lunch Seminar II: Riemannian manifolds with positive Yamabe invariant and Paneitz operator February 19, 2016 (01:10 PM PST - 02:00 PM PST)
Parent Program:
Location: MSRI: Simons Auditorium
Speaker(s) Yueh-Ju Lin (University of Michigan)
Description No Description
Video
No Video Uploaded
Abstract/Media

For a compact Riemannian manifold of dimension at least three, we know that positive Yamabe invariant implies the existence of a conformal metric with positive scalar curvature. As a higher order analogue, we seek for similar characterizations for the Paneitz operator and Q-curvature in higher dimensions. For a smooth compact Riemannian manifold of dimension at least six, we prove that the existence of a conformal metric with positive scalar and Q-curvature is equivalent to the positivity of both the Yamabe invariant and the Paneitz operator. In addition, we also study the relationship between different conformal invariants associated to the Q-curvature. This is joint work with Matt Gursky and Fengbo Hang.

No Notes/Supplements Uploaded No Video Files Uploaded